
Find needles in a haystack

API reference document

For this section, I assumed that the method in the code sample is part of a class NeedlesInHaystack.

public class NeedlesInHaystack

Method: findNeedles

• Type: public static

• Parameters and datatypes:

– String haystack
– String[] needles

• Returns: Nothing

• Usage: Prints the number of times each element of the string array needles is present in the string
haystack.

• Example:
String haystack = "Google Cloud provides APIs to use Google's ML/AI capabilities.";
String[] needles = {"Google", "API", "documentation", "AWS", "ML/AI"};
new NeedlesInHaystack().findNeedles(haystack, needles);

Output:
Google: 2
API: 0
documentation: 0
AWS: 0
ML/AI: 1

Ideas about the code sample

After evaluating the code sample, I have the following questions and ideas:

• Why should we restrict the length of the needles array to five? If this is a strict requirement, consider
modifying the message in the print statement within the if block to “Use a maximum of five words!”.
The modification eliminates the ambiguity in “Too many. . . ”.

• Assign needles.length to a variable, as it eliminates the necessity to evaluate the expression thrice in
the code. Also, referencing to a variable is more memory efficient.

• To increase efficiency, take the following statement out of the first for loop: String[] words =
haystack.split("[\"\'\t\n\b\f\r]", 0);. The words array does not change with every iteration.

• To enhance readability, consider using k as the iterator in the third for loop, as i and j are already in
use at close proximity.

• The central idea of the method is to act as a frequency counter and print key-value pairs. For such
situations, a hashmap is a better data structure. Using a hashmap is also convenient when we want to
return an object with key-value pairs.

1

Based on the discussion above, I propose the following revised code (not introducing hashmap to avoid too
many changes, but adding some padding for completeness):

Revised code sample:
public class NeedlesInHaystack {

public static void findNeedles(String haystack, String[] needles) {
int needlesLength = needles.length;
String[] words = haystack.split("[\"\'\t\n\b\f\r]", 0);
int[] countArray = new int[needlesLength];
for (int i = 0; i < needlesLength; i++) {

for (int j = 0; j < words.length; j++) {
if (words[j].compareTo(needles[i]) == 0) {

countArray[i]++;
}

}
}
for (int k = 0; k < needlesLength; k++) {

System.out.println(needles[k] + ": " + countArray[k]);
}

}
public static void main(String[] args) {

/* Hard-coded values used for demonstration only.
Ideally, receive values from standard input. */
String haystack = "Google Cloud provides APIs to use Google's ML/AI capabilities.";
String[] needles = {"Google", "API", "documentation", "AWS", "ML/AI"};
findNeedles(haystack, needles);

}
}

Sample output:
Google: 2
API: 0
documentation: 0
AWS: 0
ML/AI: 1

2

	Find needles in a haystack
	
	API reference document
	public class NeedlesInHaystack

	
	Ideas about the code sample

