
Automating interaction with Cloud
Storage and Vision API using Python

This tutorial describes how to automate the interaction between your local machine, Google
Cloud Storage, and Google Cloud Vision. We use Python 3.x as the programming language,
and various tools offered by the Google Cloud Platform.

In this tutorial:

● About the Google Cloud Platform

● Configuring Google Cloud

● Setting up the project

● Creating a Python script

● Extending the project

About the Google Cloud Platform

Google Cloud Platform (GCP) offers Google’s state-of-the-art computing infrastructure for
various components of modern software development, such as:

● Virtual machines and containers

● Databases and object storage

● Application deployment and authentication

● Machine learning and computer vision

● Networking and security

This project uses the following GCP products (within the free usage limits):

● Google Cloud Storage: Store assets and objects for your applications.

● Google Vision API: Efficiently use Google’s pre-trained computer vision models for

common image-based applications.

● Google Cloud SDK and client libraries: Rapidly develop, deploy, and manage the

application using command line tools.

https://cloud.google.com/free/docs/gcp-free-tier

Configuring Google Cloud
To configure the project, resources, and APIs in the Google Cloud Platform:

1. Sign in to Google Cloud Platform using your Google account credentials.

2. Create a new project, and note the Project ID.

3. Create a storage bucket for the project created in step 2, and set the following
Permissions:

a. Public access to allUsers
b. Access control to Uniform

In addition, note the name of the bucket.

4. Try the Vision API, then enable it for your project.

Setting up the project
On your local machine, create a development environment with all necessary packages, Cloud
SDK, and client libraries.

Prerequisites
Ensure that Python 3.x and pip3 is available on your system.

Caution: The permission settings expose the bucket and the objects within it to the
public. Unrestricted public access reduces the complexity of the project, but is
inappropriate for production environments.

Note: When enabling the Vision API using the Google Cloud Console, don’t generate
any authorization credentials. In the next section, we generate the authentication
credentials using the gcloud utility.

$ python --version

$ pip --version

$ pip install --upgrade pip

https://cloud.google.com/
https://www.google.com/account/about/
https://console.cloud.google.com/projectcreate
https://cloud.google.com/storage/docs/creating-buckets#storage-create-bucket-console
https://cloud.google.com/storage/docs/access-control/making-data-public#buckets
https://cloud.google.com/storage/docs/using-uniform-bucket-level-access#enable
https://cloud.google.com/vision/docs/drag-and-drop
https://cloud.google.com/vision/docs/setup#api

Setting up a Python development environment

1. Create a project directory and navigate to it.

2. Create and activate a virtual environment.

Notice that the prompt in your terminal changes to the following format:

The next sections of the tutorial assume that you are within the virtual environment.

Installing and configuring the Google Cloud SDK

1. Install the Cloud SDK for your machine’s operating system. When the installation wizard
prompts, accept the defaults by entering y throughout the installation process.

2. After completing the installation, initialize the project.

When the program prompts, provide inputs that are relevant to the project.

Installing the Storage and Vision client libraries
Install the Storage and Vision client libraries for Python 3.x .

$ mkdir PROJECT_DIRECTORY

$ cd PROJECT_DIRECTORY

$ pip install --upgrade virtualenv

$ virtualenv VIRTUALENV_NAME

$ source VIRTUALENV_NAME /bin/activate

(VIRTUALENV_NAME) [USER @ HOST PROJECT_DIRECTORY]$

$ gcloud init

$ pip install --upgrade google-cloud-storage google-cloud-vision

https://cloud.google.com/sdk/docs/install

Configuring the Storage and Vision client libraries

1. Create a service account.

2. Grant permissions to the service account.

3. Generate the key file.

4. Configure the authentication credentials for your application code by setting the
environment variable GOOGLE_APPLICATION_CREDENTIALS to the name of the key
file.

$ gcloud iam service-accounts create SERVICE_ACCOUNT_NAME

$ gcloud projects add-iam-policy-binding PROJECT_ID
--member="serviceAccount: SERVICE_ACCOUNT_NAME @ PROJECT_ID .iam.g
serviceaccount.com" --role="roles/owner"

$ gcloud iam service-accounts keys create KEY_FILE .json
--iam-account= SERVICE_ACCOUNT_NAME @ PROJECT_ID .iam.gserviceacco
unt.com

Warning: Ensure that the private key in the .json file is unavailable to the public. If
you use GitHub or similar services to host the code for this project, add the name of
the key file to .gitignore .

$ export GOOGLE_APPLICATION_CREDENTIALS=" KEY_FILE .json "

Note: The environment variable is set only for the current shell session. If you restart
the shell, you must reset the environment variable.

Creating a Python script
In this section, we develop a Python 3.x script that automates the following:

1. Accept a directory containing images as an input. For this project, we use images of

famous landmarks.

2. Upload the images to the Cloud Storage bucket created in the previous section.

3. For each uploaded image:

a. Use the Vision API to extract information about the landmarks present in the

image.

b. Print some information of common interest (for example, description and location

of the landmark).

Project structure
To complete the project structure, create the following:

1. A directory containing images of landmarks.

2. A file main.py .

Ensure that the project structure is similar to the following sample:

. PROJECT_DIRECTORY
|

|--- VIRTUALENV_NAME
| |

| |--- bin

| |--- include

| |--- lib

| |--- lib64

| |--- pyenv.cfg

|

|

|--- IMAGE_DIRECTORY
| |

| |--- image1.png

| |--- image2.jpg

| |--- image3.jpeg

|

|

|--- KEY_FILE .json
|

|--- main.py

Code
In the file main.py , write code which is similar to the following sample:

Import dependencies

from __future__ import print_function
from google.cloud import storage, vision
import io, os

--

Define functions

def get_image_names(image_dir):
 """Returns a list containing absolute paths of images."""
 image_abspath_list = []
 for file in os.listdir('./' + image_dir):
 image_abspath_list.append(os.path.abspath(image_dir + '/' + file))
 return image_abspath_list

def upload_landmark_images(bucket_name, image_abspath_list):
 """Returns a list containing relative URIs of uploaded images."""
 relative_storage_uris = []
 storage_client = storage.Client()
 bucket = storage_client.bucket(bucket_name)
 for image_abspath in image_abspath_list:
 image_name = image_abspath.split('/')[-1]
 blob = bucket.blob(image_name)
 blob.upload_from_filename(image_abspath)
 relative_storage_uris.append('gs://' + bucket_name + '/' +
image_name)

 return relative_storage_uris

def get_landmark_information(relative_storage_uris):
 """Returns information on uploaded images."""
 vision_client = vision.ImageAnnotatorClient()
 image_object = vision.Image()
 for image_uri in relative_storage_uris:
 image_object.source.image_uri = image_uri

 vision_response =
vision_client.landmark_detection(image=image_object)
 print('\n', '+' * 100, '\n')
 print('IMAGE:', image_uri, '\n')
 for landmark in vision_response.landmark_annotations:
 print('=' * 50)
 print('Landmark name:', landmark.description)
 print('Landmark location:', landmark.locations)
 print('Detection confidence score:', landmark.score)

--

Accept user inputs

print('\n')
image_dir = input('Enter the image directory: ')
bucket_name = input('Enter the bucket name: ')

Call functions

print('\n', 'Getting image names...')
image_abspath_list = get_image_names(image_dir)
print(' DONE', '\n')

print('\n', 'Uploading images to cloud storage...')
relative_storage_uris = upload_landmark_images(bucket_name,
image_abspath_list)

print(' DONE', '\n')

print('\n', 'Extracting landmark information...')
get_landmark_information(relative_storage_uris)
print('\n', '+' * 100, '\n')
print(' DONE... All information displayed!')
print('\n\n')

Output
Execute the file main.py . In the terminal, you should see an output similar to the following
sample:

(VIRTUALENV_NAME) [USER @ HOST PROJECT_DIRECTORY]$ python main.py

Enter the image directory: IMAGE_DIRECTORY
Enter the bucket name: BUCKET_NAME

 Getting image names...

 DONE

 Uploading images to cloud storage...

 DONE

 Extracting landmark information...

 +++

IMAGE: gs:// BUCKET_NAME / IMAGE_1 .jpg
==

Landmark name: Taj Mahal

Landmark location: [lat_lng {

 latitude: 27.174698469698683

 longitude: 78.042073

}

]

Detection confidence score: 0.8424403667449951

==

Landmark name: Taj Mahal Garden

Landmark location: [lat_lng {

 latitude: 27.1732425

 longitude: 78.0421396

}

]

Detection confidence score: 0.7699416875839233

==

Landmark name: Taj Mahal

Landmark location: [lat_lng {

 latitude: 27.166695

 longitude: 77.960958

}

]

Detection confidence score: 0.4865312874317169

 +++

 DONE... All information displayed!

Extending the project
In this project, you learned how to:

● Configure Google Cloud for your project

● Set up a Python development environment for cloud applications

● Programmatically use the Storage and Vision API

You can use these learnings and extend the project. Some ideas for further development are as
follows:

● Use the Google Maps API to obtain the names of the landmark locations.

● Use Cloud SQL to store and retrieve the URLs of the images.

● Expose a REST API by creating a Flask application, and test it using Postman.

● Deploy the application to Google App Engine.

● Authenticate users using OAuth2.

If you discontinue development, delete the project to avoid incurring charges.

$ gcloud projects delete PROJECT_ID

https://developers.google.com/maps/documentation/geocoding/start#reverse
https://cloud.google.com/sql/docs
https://cloud.google.com/appengine/docs/standard/python3/building-app/writing-web-service
https://www.postman.com/
https://cloud.google.com/appengine/docs/standard/python3/building-app/deploying-web-service
https://developers.google.com/identity/protocols/oauth2
https://cloud.google.com/sdk/gcloud/reference/projects/delete

